-
PCB設計徹底解決電源散熱問題的契機在哪?
本文主要闡述了利用PCB設計來解決電源模塊的散熱問題的具體方法策略。具體步驟就是通過通孔布置最大化雙向電源模塊散熱性能來布局PCB。電源模塊則嚴格配置成單路40A雙相輸出和兩路20A單相輸出。通過通孔形式的電路板設計來為電源模塊散熱。
2015-08-27
PCB 導熱系數 FR4 電源模塊 散熱
-

實打實經驗:智能手環的PCB設計注意事項
一個智能手環通常由很多電路組成,而電路PCB通常集中在較小的范圍內,進行單面或者雙面貼片,電路板為4層或者6層為主。既然那么多功能集中在一個較小的PCB板上,那么在手環的布局和布線中我們要進行格外的注意,現在總結一些注意事項,以供參考。
2015-08-25
智能手環 PCB設計
-
小編推薦:PCB板設計之PCB布局的點滴
對于許多剛從事電子設計的人員來說,在PCB布線方面經驗較少,雖然已學會了PCB板設計軟件,但設計出的PCB板常有這樣那樣的問題。小編推薦的工程師曾多年從事PCB板設計的工作,將印制線路板設計的點滴經驗與大家分享。
2015-08-21
PCB板 PCB布局
-

PCB設計之3W原則,你知道嗎?
在PCB設計中為了減少線間串擾,應保證線間距足夠大,當線中心間距不少于3倍線寬時,則可保持大部分電場不互相干擾,這就是3W原則。
2015-08-20
PCB設計 3W原則
-
怎么權衡最小漏電流與最佳衰減效果?簡析漏電流
本文首先簡要介紹了EMC的特性及原理,同時簡要概括了濾波器的功能及原理。轉回本文的主題,什么是漏電流?漏電流與衰減效果之間存在什么關系?怎么權衡最小漏電流與最佳衰減效果的關系?本文都會一一詳解。
2015-08-20
漏電流 濾波器 衰減 EMC
-
確保PCB設計信號完整性(SI)的10個步驟
信號完整性(SI)問題解決得越早,設計的效率就越高,從而可避免在PCB設計完成之后才增加端接器件,本文主要介紹了幾種解決信號完整性(SI)問題的方法。
2015-08-19
PCB設計信號完整
-
歡迎各位拍磚!看資深工程師怎么解決醫療設備的EMC問題
近年來突然被廣泛關注的醫療設備EMC測試問題,讓醫療設備領域叫苦不迭。資深 EMC工程師為解決醫療設備的EMC 問題,再次分享經驗一二,希望做醫療設備的工程師記住以下幾個關鍵點。
2015-08-18
EMC 濾波器 開關電源
-

經典技術:小間距QFN封裝PCB設計串擾抑制分析
對于8Gbps及以上的高速應用更應該注意避免此類問題,為高速數字傳輸鏈路提供更多裕量。本文針對PCB設計中由小間距QFN封裝引入串擾的抑制方法進行了仿真分析,為此類設計提供參考。
2015-08-17
QFN封裝 PCB設計串擾抑制
-

你不可不知的:PCB設計中如何減少諧波失真?
實際上印刷線路板(PCB)是由電氣線性材料構成的,也即其阻抗應是恒定的。那么,PCB為什么會將非線性引入信號內呢?答案在于:相對于電流流過的地方來說,PCB布局是“空間非線性”的。
2015-08-14
PCB設計 諧波失真
- 機構預警:DRAM價格壓力恐持續至2027年,存儲原廠加速擴產供應HBM
- IDC發出預警:存儲芯片暴漲,明年DIY電腦成本恐大幅攀升
- 2025年全球智能手表市場觸底反彈,出貨量將增長7%
- 從集成到獨立!三星首款2nm芯片Exynos 2600將不集成5G基帶
- AI熱潮的連鎖反應:三星、SK海力士上調HBM3E合約價
- 無負擔佩戴,輕便舒適體驗:讓智能穿戴設備升級你的生活方式
- TWS 耳機智能進階的 “隱形核心”:解讀無錫迪仕 DH254 霍爾開關
- - 解決頻率偏差問題的可重構低頻磁電天線研發
- 從實驗室到產業界:鋰硫電池的商業化之路探析
- Alleima 合瑞邁Hiflex?壓縮機閥片鋼助力空調能效提升超18%
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall




