雖然反激式轉(zhuǎn)換器極為常用,但這種拓撲存在實用局限性。圖1中的變壓器T1并未作為典型的變壓器使用。當Q1處于開啟狀態(tài)時,不會有電流流經(jīng)T1的次級繞組。初級電流的電能幾乎全部存儲在變壓器線圈中。降壓轉(zhuǎn)換器在扼流圈(電感)中存儲電能,反激式轉(zhuǎn)換器采用與之類似的方式在變壓器中存儲電能。當Q1處于閉合狀態(tài)時,T1的次級會形成電流,為輸出電容COUT 和輸出提供電能。這種概念很容易實現(xiàn),但在更高功率下概念本身存在局限。變壓器T1被用作儲能元件。所以,該變壓器也能稱為耦合電感(扼流圈)。這就要求變壓器存儲所需的電能。電源的電能等級越高,需要的變壓器體積越大,成本越高。在大部分應(yīng)用中,功率上限約為60 W。
如果需要使用電氣隔離電源來獲取更高功率,那么正向轉(zhuǎn)換器是一個不錯的選擇。概念如圖2所示。在這里,變壓器真正用作典型變壓器。當電流流過初級的Q1時,次級也會形成電流。所以,變壓器無需具備儲能作用。事實上,反過來也是成立的。必須確保變壓器始終在Q1閉合期間放電,以免它在幾個周期后意外達到飽和。
圖 2. 反激式控制器(正向轉(zhuǎn)換器),功率最高可達約 200 W 。
如果是實現(xiàn)相同功率,正向轉(zhuǎn)換器所需的變壓器體積比反激式轉(zhuǎn)換器所需的體積小。所以,即使在功率等級低于60 W時,正向轉(zhuǎn)換器也非常實用。但存在一個缺點,即必須避免變壓器線圈在每個周期無意地存儲電能,這應(yīng)由圖2中開關(guān)Q4和電容C C 的有源箝位布線實現(xiàn)。此外,正向轉(zhuǎn)換器一般要求在輸出端采用額外的電感L1。但是,如此之后,在同等功率水平下,輸出電壓的紋波會比使用反激式轉(zhuǎn)換器時低。
電源管理IC(例如來自ADI的ADP1074)提供了一個非常緊湊的正向轉(zhuǎn)換器設(shè)計解決方案。當需要高于約60 W的功率水平時,通常會使用這種結(jié)構(gòu)。低于60 W時,根據(jù)電路的復(fù)雜性和可實現(xiàn)的效率,采用正向轉(zhuǎn)換器也是比采用反激式轉(zhuǎn)換器更好的選擇。為了更簡單地確定使用哪種拓撲,建議使用免費電路模擬器LTspice模擬仿真。圖3所示為在LTspice模擬環(huán)境下,ADP1074正向轉(zhuǎn)換器電路的模擬仿真原理圖。
圖 3. LTspice® 中模擬的采用 ADP1074 的電路示例。
ADP1074
●電流模式控制器,實現(xiàn)有源鉗位正激式拓撲
●集成5 kV(寬體SOIC封裝)或3.0 kV(LGA封裝)電介質(zhì)額定絕緣電壓,采用ADI公司的iCoupler專利技術(shù)
●寬電源電壓范圍
●主面VIN:高達60 V
●輔面VDD2:高達36 V
●用于電源開關(guān)和有源鉗位復(fù)位開關(guān)的集成1 A主面MOSFET驅(qū)動器
●用于同步整流的集成1 A輔面MOSFET驅(qū)動器
●集成誤差放大器和<1%精密基準電壓
●可編程斜率補償
●可編程頻率范圍:50 kHz至600 kHz(典型值)
●頻率同步
●可編程最大占空比限值
●可編程軟啟動
●從預(yù)充電負載開始平穩(wěn)啟動
●可編程死區(qū)時間
●使用MODE引腳的省電輕負載模式